
ED 038 839

AUTHOR
TITLE
INSTTTUTTON
DEPORT NO
PUB DATE
NOTE

EDRS PRICE
DESCRIPTORS

ABSTRACT

DOCUMENT RESUME

EN 007 809

Fremer, John: Anastasio, Ernest J.

Computer-Assisted Item Writing -I. Spelling Items.
Educational Testing Service, Princeton, N.J.
TDM-68-1
Jul 68
12p.

EDPS Price MF-$0.25 HC-$0.70
Computer Assisted Instruction, *Computer Programs,
Educational Technology, Item Analysis, *Programing,
*Spelling Instruction, Testing

Computers have been used successfully in test
assembly following the cooperation of test specialists and computer
specialists in systematic analyses of the test-assembly process.
Systematic exploration of the item-writing process may well make it
possible for the computer to take on some of the less creative
portions of item writing. The current study demonstrates the
potential usefulness of the computer as a tool for an item writer. A
spelling item type was used for this demonstration, as it seemed to
have the fewest facets or dimensions. An analysis was then made of
the types of misspellings which are used by writers of spelling
items. A set of error-generation rules was developed and a computer
program [The MISSPELLER] was written. A sample of words was fed into
the computer and a list of misspelled words, separated into
previously defined error categories was created.. The list was then
evaluated by spelling-test developers and judged to be a useful
resource. Other more complex item types are now being studied.
Appendices contain samples of the printouts obtained. (Author/JY)

TEST DEVELOPMENT MEMORANDUM
TOM-68-1 JULY 1968

Computer-Assisted Item Writing I (Spelling Items)

John Fremer

Test Development Division, ETS

Ernest J. Anastasio

Developmental Research Division, ETS

EDUCATIONAL TESTING SERVICE
PRINCETON, NEW JERSEY
BERKELEY, CALIFORNIA

COMPUTER-ASSISTED ITEM WRITING I (SPELLING ITEMS)

U.S. DEPARTMENT Of HEALTH. EDUCATION & WELFARE

OFFICE OF EDUCATION

THIS DOCUMENT HAS SEEN REPRODUCED EXACTLY AS RECEIVED FROM THE

PERSON OR ORGANIZATION ORIGINAIM IT. POINTS OF VIEW OR OPINIONS

STATED DO NOT NECESSARILY REPRESENT OFFICIAL OFFICE OF EDUCATION

POSITION OR POLICY.

JOHN FREMER
Test Development Division, ETS

ERNEST J. ANASI ASIO
Developmental Research Division, ETS

Test Development Memorandum
TDM -68-1
July 1968

EDUCATIONAL TESTING SERVICE
Princeton, New Jersey

Abstract

Computers have been used successfully in test assembly following the cooperation

of test specialists and computer specialists in systematic analyses of the test-assembly

process. Systematic exploration of the item-writing process may well make it possible

for the computer to take on some of the less creative portions of item writing. The

current study demonstrates the potential usefulness of the computer as a tool for an

item writer. A spelling item type was used for this demonstration, as it seemed to

have the fewest facets or dimensions. An analysis was then made of the types of mis-

spellings which are used by writers of spelling items. A set of error-generation rules

was developed and a computer program [The MISSPELLER] was written. A sample

of words was fed into the computer and a list of misspelled words, separated into

previously defined error categories was created. The list was then evaluated by

spelling-test developers and judged to be a useful resource. Other more complex

item types are now being studied.

Computer Assisted Item Writing I (Spelling Items)1

General Introduction

The widespread availabilhy of computers is causing farsighted individuals in all

areas to consider new ways to employ this valuable tool. The first step which a

potential computer-user must take is that of systematically analyzing the tasks which

he sees as amenable to computer assistance. At Educational Testing Service a program

is now in progress to turn over to a computer a major part of the task of assembling

items into tests. Careful study of the logic of test assembly necessarily preceded

the development of appropriate computer programs. Once experienced test devel-

opers and computer specialists learned to speak each other's language it was

possible to work toward a mutually comprehensible description of the steps involved

in test assembly.

A pilot study by Rock (1965) indicated that at that time the computer could

produce a test comparable to one assembled by a relatively inexperienced human

test developer.

The art of computer assembly has progressed considerably since Rock's

study. Given a pool of classified items, the computer can now produce opera-

tional tests that meet previously defined content and statistical specifications.

The research reported here represents the first part of a project which aims

to explore the item-writing process, with a view toward developing computer

techniques that would make possible the generation of verbal items. Our objec-

tives include the identification of the properties of words and sentences that are

most relevant to the creation of verbal items and the development of rules for

the coding of words and sentences so that they can be manipulated by the computer.

'Paper presented at the annual meeting of the National Council on Measurement
in Education, Chicago, Illinois, February, 1968.

-3-

There have been a number of recent indications that the time has arrived to employ

the computer as an item writer. Osburn (1966), for example, has developed a corn -

puter procedure for writing statistics problems. He uses a series of "question frames"

containing fixed and variable components. Each time a change is made in a variable

component, a new item is created. Some resemblance can be seen between Osburn' s

approach and that used by Guttman (1965) in his facet analysis.

Another bit of evidence for the feasibility of computer assistance in item writing

is Richards' recent study, "Can Computers Write College Admissions Tests?"

(Richards 1967). Richards constructed a synonym test by simulating a computer,

using Roget' s Thesaurus as a word base. He subsequently tested entering freshman

at the University of Iowa and found that his 72-item test was less reliable than the

.48-item Wide Range Vocabulary Test but that it was equally effective as a predictor

of first-semester Grade Point Average.

The simulation study by Richards bypassed such problems as creating a data

base and writing the actual computer programs, but in the words of its author:

"The simulation was rigorous... and the items correspond exactly to what would

be written by a computer. "

An Outline For an Exploratory Study

Richard's study stimulated the interest of some of the individuals at

Educational Testing Service engaged in developing verbal tests and of some

researchers who were generally interested in computer applications to education.

A series of meetings on possible ways to follow up this shared interest led to

plans for exploratory studies of computer applications to a variety of verbal-item

types. The first item types to be considered were those involving only single

words instead of items requiring a larger context. A decision was finally made

to focus initially on the simplest single-word item typethe spelling item.

The spelling item seemed a particularly desirable starting point for a limited

demonstration of computer potential, as the relevant item dimensions seemed to

be easily defined. The particular type of spelling item which was considered

presents a student with four incorrectly spelled words and one correctly spelled

word. A sample item with directions follows:

-4-

Directions: From each group of words, select the word that is correctly spelled and
blacken the corresponding space on your answer sheet.

There is one and only one correctly spelled word in each group.

Example:

(A) imerse
(B) decide
(C) numni
(D) eihgt
(E) sould

DID6 6 CI

It was first necessary to agree on what would constitute a minimal demonstration

of the computer's item-writing potential. We expected to find the task of generating

items to be more difficult than the previously explored task of assembling a test

from an existing item pool. We therefore decided to make "computer assistance"

our first goal and to attempt to produce a pool of misspelled words to serve as a

resource file for an item writer, rather than to attempt to produce complete items.

We agreed that the following five steps would be necessary:

1. Develop rules for generating misspelled words

2. Write a computer program for applying the rules to words

3. Select a group of words to serve as a data base

4. Run the program

5. Evaluate the computer output

Developing Error-Generation Rules

The task of writing out rules for generating plausible misspellings was carried

out initially by research personnel who had no previous experience with the construc-

tion of spelling items. A list of misspelled words previously used in spelling tests

was supplied as a reference document for discovering error-generation rules or

algorithms. The task of developing algorithms proved quite simple, requiring but

3 to 4 hours of time from two psychologists who had never before "consciously

attempted" to produce spelling errors. A total of forty rules were developed

-5-

initially. Here are two such rules stated in sentence form:

If the letter-pair i e appears in a word, replace this letter-pair with the
letter-pair e i .

If a doubled consonant appears in a word, replace this doubled consonant
with a single consonant.

The list of error rules was examined by staff members who had worked on spelling

tests, They expressed considerable surprise both at the number of rules and at the

fact that these rules seemed capable of generating many plausible misspellings. The

spelling-test writers soon discovered, however, that they could produce additional

error rules, based on their own item writing habits or on available information on

frequent misspellings. It became clear that we would be able to produce enough

misspellings to bring tears to.the eyes of a spelling teacher. We faced the problem,

on the other hand, that many of the rules produced implausible misspellings when

applied to all words. Separating the rules according to the part of the word to

which they should be applied promised to help somewha . but it was decided that the

ratio of plausible to implausible misspellings might best be improved by first

creating a pool of misspellings and then noting which misspellings were selected for

items by item writers and later chosen as correct by test takers.

Programming

Programming of the rules was done in SNOBOL, a language deVeloped at

Bell Telephone Laboratories especially to facilitate the handling of strings of

symbols or characters by a computer. This language is most appropriate for tasks

that do riot require extended arithmetic computations. Researchers who would like

to make greater use of computers, but are discouraged by the formidable task of

learning a specialized and abstract computer language, should investigate the

possibility of using SNOBOL. This flexible high-level computer language has two

characteristics which increase its accessibility to a potential user:

1. The user can describe procedures in a nontechnical language which resembles
natural language in some respects.

2. The user can write a complete program without involving himself in the
complexities of machine operations.

For the current study SNOBOL offered a distinct advantage: a complete operating

program could be written in approximately six man-hours. Also, the program is in

a form which allows non-computer people to understand the structure and selection

logic with relatively little guidance. A partial listing of the program2 used for

creating spelling errors is reproduced as Appendix 1. This listing includes only a

sample of the error rules which were eventually developed.

The program generates misspellings by applying the error-generation rules to

words. A word is defined ar: a string of characters which is preceded and followed

by a blank space. The error-generation rules have been coded as a series of

replacement functions with the previously described form"If you see this, replace

it with that. " In attempting to apply the error-generation rules, the misspeller

program does pattern matching. That is, it searches a word or string of characters

for particular substrings or ordered sequences of characters. The patterns to be

matched are literal character combinations, that is, specific letter combinations,

and are represented as the first term in each of the replacement rules. When the

program succeeds in matching a pattern, that pattern is replaced by the second

term of the replacement rule.

Rules for the beginning or end of a word are applied to the first "n" or last "n"

characters of a word, where "n" is equal to the number of characters in the first

term of the replacement rule. Appendix 2 is a sample of the misspeller program

output. The numbers alongside the misspellings refer to the error-generation rules

contained in Appendix 1. The first misspelling for the word ACQUIESCENCE was

generated by the application of rule number five. In attempting to apply this rule,

the computer looked only at the first three letters of every word, since the pattern

2The authors gratefully acknowledge the assistance of Carl Helm in the preparation
of the computer program.

-7-

flACQ" that it was trying to match has only three letters. In attempting to apply

each of its replacement rules in succession to the middle of a woid, the computer

starts with the second character of the word and proceeds through it. When a rule

fails, that is, when the pattern is not matched any place in a word, the program simply

advances to the next replacement rule. When a pattern is matched, however, the

misspelled word is written into an output file and the rule is applied to the remainder

of the word. This procedure permits a rule to be applied more than once to a

particular word if a pattern that will trigger an error rule of curs more than once in

that word. It should be noted, however, that each word in the list of misspelled

words will contain only one error.

Summary and Conclusion

Our demonstration of the computer's ability to assist in the writing of spelling

items has satisfied our original criteria. We have developed rules, programmed

the rules, selected some words to be manipulated, run the program, and obtained

an evaluation of the output by spelling-test item writers. The item writers indeed

felt that lists of words with misspellings would be a helpful resource even with a

large proportion of implausible misspellings. We have not, on the other hand, run

the program on a large group of words and have not attempted to increase the

efficiency of the program in terms of proportion of plausible misspellings. There

may be enough information on student Misspellings already available so that there

is no practical reason for pursuing our spelling effort further. Even if this is true,

we may eventually develop a compendium of words and their misspellings as an

adjunct to some study of the spelling process and of the amount of confusion caused

by misspellings.

For the present, however, we are turning our attention to other, more complex,

and consequently more difficult-to-handle item types. We have so far begun the

study of two additonal item types. Don Marcotte, a 1967 ETS summer graduate

student, applied a syntactical analysis to sentences used in sentence completion

items in an attempt to identify structural communalities. Another study is now under

way to develop a facet model of the various types of relationships employed in analogy

items.

References

Guttman, L. A Faceted Definition of Intelligence. Scripta Hierosolymitane.
1965, 4, 166-181.

Osburn, H. G. Computer Aided Item Sampling for. Achievement Testing. Paper
read at the annual meeting of the American Psychological
Association, New York, September 1966.

Richards, J. M. Jr. Can Computers Write College Admissions Tests?
Journal of Applied Psychology, 1967, 51, 211-215.

Rock, D. Assembly of Tests by use of an Automated Item File. Research
Memorandum 65-14, Princeton, N.J. : Educational Testing Service,
1965.

APPENDIX 1

RULES FOR MISSPELLING WORDS (THE MISSPELLER/

*RULES FOR BEGINNING OF WORD ONLY
POINTER = '0'

1. REPLACE(' PRE' , ' PER ')

2. REPLACE('PER', 'PRE')
3. REPLACE(ADJ' , AJ)
4. REPLACE(AJ ADJ)
5. REPLACE('AU' AQ)
6. REPLACE(' AGO ACQ I)

*RULES FOR EVERYWHERE EXCEPT LEFT

AND RIGHT TERMINALS

LOOPB

POINTER =POINTER + '1

WORD */ 1 * *WORD*
7. REPLACE(1E', EI)

8. REPLACE(EI E)
9. REPLACE(MB WV)

10 REPLACE(SH s)

U. REPLACE(CH ' , C)
12. REPLACE(SC", S')
13. REPLACE(SC', 'C)

14. REPLACE(EA)

15. REPLACE(EE , EA)
16. REPLACE(OR ER)

17. REPLACE(ER OR)
18. REPLACE(XH's H)
19, REPLACE('PH , F)
20 . REPLACE(WR , R)
21. REPLACE(GHT , HGT)
22. REPLACE(ANC ENG')
23. REPLACE(ENC , ANC)
24. REPLACE(AGE' EGE°)
25. REPLACE(EGE AGE')
26. REPLACE(ANT ENT)
27. REPLACE(ENT ANT)
28. REPLACE(ABL EBL)
29. REPLACE(EBL ABL)
30. REPLACE(ABL , IBL)
31. REPLACE(I BL ABL)
32. REPLACE(EBL , IBL)

33. REPLACE(I BL En)
34. REPLACE(ION' IN")

35. REPLACE: OUL OL ')

36. REPLACE(OUL UL)
37. REPLACE(PHY PY)

38. REPLACE(EUR URE)
39. REPLACE(CHO' CO)
40. REPLACE('PRE** 'PER)
41. REPLACE('PER * 'PRE)
42. REPLACE(I ZE ISE')
43. REPLACE(ISE', I ZE)

44. REPLACE(EDGE * EGE)
45. REPLACE(EGE * 'EDGE)
46. REPLACE(TI ON' °SION')
47. REPLACE(SI ON' T/ON)
48. REPLACE(THYM s 'THEM')

49. REPLACE(THYM1 THM)
50. REPLACE(S C)
51. REPLACE(C S)
52. REPLACE(Y I)

53. REPLACEC I)

54. woRri *Al° 1 * *B1 1 */F(LOOPC)
EQUALS(A,B) REPLACE((A B) A)

/ (L COP B)

RUINS FOR TERMINALS ONLY

LOOPC

POINTER = LENGTH - '3'
SAVE */POINTER* *WORD*

55:REPLACE(ARY'sRY')
56.REPLACE(dERY'sRY9)
57.REPLACE('ORY'sRY')
58.REPLACE(' IRY'sRY°)
59.REPLACE('ALY'sLY°)
60.REPLACE('ELY','LY')
61.REPLACE('ILY','LY')

POINTER = POINTER + '1'
SAVE */POINTER* *WORD*

62.REPLACE('EL°,'LP)
63.REPLACE(LV,'EL0)
64.REPLACE(' UL'o'ULL')
65.REPLACE(' EL's'AL')
66.REPLACE(' AL's'EL')
67.REPLACE('AL','LE')
-68,REPLACE(' LE's'AL')
69.REPLACE(EY's'Y')

POINTER = POINTER + '1'
SAVE * /POINTERz *WORD*

70.REPLACE('Y's'EY')
71.REPLACE('I's'Y')

APPENDIX 2

Sample Computer Output

INITIAL MIDDLE

ACQUIESCENCE 5. AQUIESCENCE 7. ACQUEISCENCE

12. ACQUIESeENCE

13. ACQUIEpENCE

23. ACQUIESCANCE

50. ACQUIECCENCE

51. ASQUIESCENCE

51. ACQUIESSENCE

51. ACQUIESCENSE

53. ACQUYESCENCE

EXCELLENT 27. EXCELLANT

51. EXSELLENT

54. EXCEL ENT

MODIFIED 7. MODIFEID

53. MODYFIED

53. MODIFYED

TERMINAL

PREFERABLE 1. PERFERABLE 17. PREFORABLE 63. PREFERABEI,

28. PREFEREBLE 68. PREFERABAL

30. PREFERIBLE

REVEILLE 7. REVIELLE

UNIVERSITY

53. REVEYLLE

54. REVEILE

17. UNIVORSITY

50. UNIVERCITY

52. UNIVERSITI

53. UNYVERSITY

53. UNIVERSYTY

63. REVIELEL

68. REVIELAL

+

70. UNIVERSITEY

1/41 = Inversion

= Omission

= Substitution_

. = Insertion

